论文部分内容阅读
合成了导电分子晶体(Me3NEt)[Pd(dmit)2]2和(NEt4)[Pd(dmit)2]2, 测定了它们的晶体结构和电导-温度曲线. 在能带计算基础上解释了(Me3NEt)[Pd(dmit)2]2的室温电导率(σ= 58(Ω·cm)-1)高于(NEt4)[Pd(dmit)2]2 (σ= 2.2(Ω·cm)-1)的原因. (Me3NEt)[Pd(dmit)2]2属单斜晶系, P21/m空间群; (NEt4)[Pd(dmit)2]2属三斜晶系, P1 空间群. 两种晶体的导电组元皆为平面型配位阴离子[Pd(dmit)2]0.5-, 它们以面对面形式的二聚体 存在. 凭借肩并肩形式的S…S分子间相互作用, 二聚体进一步形成二维导电分子层. 两种配合物的二维导电分子层的微小结构差异导致电导率一个数量级的差别. 变温电导测定还表明, 两种晶体皆为小能隙的半导体.
The crystal structures and the conductance-temperature curves of the conductive molecular crystals (Me3NEt) [Pd (dmit) 2] 2 and (NEt4) [Pd (dmit) 2] 2 were synthesized. (Σ = 58 (Ω · cm) -1) higher than (NEt4) [Pd (dmit) 2] 2 (Me3NEt) [Pd (dmit) 2] 2 belongs to monoclinic system, P21 / m space group; (NEt4) [Pd The conductive components of the crystal are all planar coordination anions [Pd (dmit) 2] 0.5-, which exist in the form of face-to-face dimers. The dimer is further formed by the side-by-side interaction of S ... S molecules The two-dimensional conductive molecular layer. The two-dimensional structure of the two-dimensional conductive polymer layer leads to an order of magnitude difference in conductivity. Variable temperature conductivity measurement also shows that both crystals are small-gap semiconductors.