论文部分内容阅读
The ZK60 magnesium alloy has been modified by Fe ion implantation and deposition with a metal vapor vacuum arc plasma source. The surface morphology, phase constituent and elemental distribution are determined by scanning electron microscopy, transmission electron microscopy, X-ray diffractometer and Auger electron spectroscopy. The results show that Fe thin film is deposited on ZK60 alloy and the corresponding thickness increases from 2.73 μm to 6.36 μm with increasing deposition time. A transition layer mainly composed of Mg, Fe and O elements is formed between Fe thin film and ZK60 substrate. The potentiodynamic polarization tests reveal that a high corrosion potential and a low corrosion current density are detected for the Fe deposited ZK60 alloy, indicating the improvement of corrosion resistance. The tensile deformation test indicates that the Fe deposited film on the ZK60 substrate can sustain 1% tensile strain without any cracks.
The ZK60 magnesium alloy has been modified by Fe ion implantation and deposition with metal vapor vacuum arc plasma source. The surface morphology, phase constituent and elemental distribution are determined by scanning electron microscopy, transmission electron microscopy, X-ray diffractometer and Auger electron spectroscopy . The results show that Fe thin film is deposited on ZK60 alloy and the corresponding thickness increases from 2.73 μm to 6.36 μm with increasing deposition time. A transition layer mainly composed of Mg, Fe and O elements is formed between Fe thin film and ZK60 substrate . The potentiodynamic polarization tests reveal that a high corrosion potential and a low corrosion current density are detected for the Fe deposited ZK60 alloy, indicating the improvement of corrosion resistance. The tensile deformation test indicates that the Fe deposited film on the ZK60 substrate can sustain 1 % tensile strain without any cracks.