论文部分内容阅读
机器人的路径规划一直是机器人研究领域的难点问题。针对煤矿井下环境的不确定性,环境的复杂使机器人很难得到好的规划结果。采用强化学习算法中的Q—learning算法实现井下移动机器人的局部路径规划,并对Q函数中的即时回报进行加权修正,使算法更有效地利用环境特征信息,进一步提高了避障能力。最后通过VC++进行仿真和模拟。仿真实验说明该方法的有效性和可行性。