论文部分内容阅读
该文提出了一种基于粒子滤波的自适应运动目标跟踪方法。均值漂移算法是一种最优梯度下降法,通过迭代来搜索目标,从而实现对运动目标的跟踪。而粒子滤波是一种在非线性和非高斯情形下进行跟踪的强有力方法。该文首先对图像的直方图进行改进,提出了一种基于统计直方图分布的目标模型,然后通过这个模型将这两种方法有效地结合起来。根据跟踪的过程,自适应地调整参数,能够较好地处理图像序列中由于光线变化或遮挡所带来的影响。实验证明,该文所提出的方法与均值漂移方法相比,即使在复杂的情形下,也能够准确地对目标进行跟踪。