论文部分内容阅读
基于函数逼近的方法存在少数类样本不足时分类效果不佳的问题,针对此问题提出了不平衡贝叶斯学习分类模型。模型引入类间隔似然函数,用于降低后验分布在参数空间上存在的偏态性,以采样到对各类样本分类精确的参数点。在UCI、KEEL上的公开不平衡数据集中的实验结果验证了所提方法的有效性;基于MINIST数据集构建了两个不平衡数据集,在这两个数据集中几何均值分别达到92.4%和81.6%。