注重基础 锐意创新

来源 :中学生理科应试 | 被引量 : 0次 | 上传用户:chengyo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  今年陕西省高考数学试题是继连续十年(2006~2015)自主命题后的第一年采用全国卷(Ⅱ)(陕西、重庆、辽宁、吉林、黑龙江、宁夏、甘肃、青海、新疆、西藏、内蒙古、海南等12个省区共用),文理科试题仍以高度相关的姊妹卷形式出现.试题结构与往年新课标基本一致,坚持在稳定中求创新,重视对高中数学基础知识、基本技能的考查,注重考查学生分析问题,解决问题的能力.试题严格遵循考试说明的各项要求,具备基础性和综合性,对知识和能力实现了多角度、多层次地考查,且兼顾中学教学实际,又在一定程度上进行了创新,更加注重数学在生活中具体的应用.同时试卷在坚持创新的基础上,从不同侧面考查学生的数学素养与学习潜能,具有较高的区分度和适宜的难度,与2015年相比,今年试卷整体平稳,难度略有提升.
  一、试题特点
  1.考查基础,探索创新
  试题充分考查考生对中学数学基础知识的掌握程度.如理科第1题考查复数与复平面上点的对应关系,第2题、文科第1题考查集合的简单运算,其中包含不等式求解,理科第3题、文科第13题考查平面向量运算,理科第9题、第13题、文科第15题考查三角函数与解三角形.同时,试题突出主干知识的考查,如文科第10题、文理科第12题、理科第16题、第21题和文科第20题从不同角度考查了函数,理科的第6题、第14题、第19题和文科的第4题、第7题、第19题考查了立体几何,特别是理科的第20题和文科的第21题这两道姊妹题,解答时都需要借助图象直观发现解题思路和结论,用严谨的逻辑推理进行证明,整个解答过程经历“画图——观察——探究——发现——证明”的过程,这些试题立意新颖,背景深刻,情境生动,设问巧妙,能很好的考查学生理性思维的广度与深度,考查学生的数学学习潜能.理科的第4题、第11题、第20题和文科的第5题、第6题、第21题考查了解析几何,理科第10题、第18题和文科第8题、第18题考查了概率统计.
  在命题方法上,通过改造、移植、嫁接等方法编制了一批立意深远,背景丰富,表述简洁的新题.如理科的第5、10、15、17、18题,文科的第8、12、16、17、18等.文理科相同的题目有9道[(文,理):(6,4),(7,6),(9,8),(15,13),(16,15),(18,18),(22,22),(23,23),(24,24)],姊妹题有8道[(文,理):(1,2),(2,1),(11,7),(12,12),(13,3),(17,17),(19,19)(21,20)]. 相同知识点的考查以不同方式呈现,体现了对文科考生的人文关怀.
  试题以能力立意,注重从知识交汇处命题,考查各种数学能力,重点考查逻辑推理能力,特别是推理论证能力.例如,理科第14题、第15题、第19题、第21题、第22题、第24题和文科第16题、第19题、第21题、第22题、第24 题.立体几何大题是个折叠问题,突出了平面和空间的转换关系,综合考查了空间想象能力、运算求解能力和逻辑推理能力,解析几何题和函数与导数题考查了考生的综合素质,数据处理能力和创新应用能力也有不同程度的考查.在题目设计上探索创新,如理科第15题、文科第16题利用生活情境考查逻辑推理能力,文理科第17题考查考生对新函数定义的理解和运用,文科导数题不再压轴,比较常规,但是超越函数求导对考生有挑战性;圆锥曲线大题是压轴题,对考生的转化能力、计算能力的要求还是很高的,平淡中出新招,凸显了数学的魅力.
  2.注重方法,能力立意
  试题在考查知识的同时,注重以有关知识为载体,考查数学思想和通性通法.例如,文理科第12题、文科第3题、理科第20题、文科第21题考查了数形结合的思想方法,理科第17题、第21题和文科第20题考查了分类讨论的思想方法,全卷多处体现了函数与方程、化归与转化的思想方法,统计与概率的思想方法在解决实际问题的过程中也得到体现.试题联系社会实践和考生熟悉的现实生活,考查考生运用数学知识和方法分析、解决实际问题的能力,体现了数学的作用和价值,有助于引导中学数学教学对学生应用意识和应用能力的培养,例如,理科第5题的志愿者活动、文理科第18题的保险费用设计和文科第8题的交通红绿灯设计都凸显了对应用能力的考查,体现了数学与现实生活的紧密联系和时代气息.
  3.中档题比重增加,运算量略有提高
  试题对基础知识的考查既注重全面又突出重点,中档难度试题比重略有增加,思维含量高,能力考查力度加大,提高了试题的层次和品位.如理科的第5、10、18、21题,文科的第12、16、17、21题等.今年高考依旧对支撑数学知识体系的主干内容:数列,三角函数(7,9题),立体几何,解析几何,计数原理与概率统计、函数与导数,做了重点的考查.
  4.注重通性通法,淡化技巧,突出数学应用试题坚持了通性通法在解题中的运用,要求运用基本概念分析问题,运用基本公式运算求解,利用基本定理推理论证,同时重视对运算求解、推理论证、抽象思维、空间想象、以及分析和解决问题能力的考查,其中运算求解能力贯穿始终,如理科的第13题,求边长同时考查正余弦定理在三角形中的应用,第16题函数导数考察一条直线同时是两条曲线的切线,第17题数列大题,看是简单,不小心就出错,第18题既考察学生的分析问题能力,又全面的考察包括条件概率,数学期望的概率问题知识点,第19题立体几何问题,考查线面垂直的判定,二面角的运算以及空间向量方法应用,特别是第18题,体现数学在生活中的应用,同时考查概率的计算与分布列,计算数学期望等.由高考改革方向来分析,以后体现数学应用的创新试题会逐渐增多.
  5.试题难度区分合理,更加有利于选拔试题分布由易到难、循序渐进,选择填空题重点考查基础知识和应用能力,选择题比较容易,如理科的第12题也可通过特殊函数解决,第17、18、19题重点考查综合运用基础知识的能力,利用数学基础知识解决问题的通法,就是第17题数列有点小变化,第20、21题重点考查学生的运算能力,思维能力与一定的探究能力,试卷整体难度分布比较平缓,难度分布也是由易到难,具有较好的梯度.通过对试题由浅入深的设置,使得思维深入有一定难度,有较好的区分功能,第20题第一问,比较常规,只要掌握斜率的互换,能简化运算,学生不会有什么困难,第二问思路简单,就是运算要求高,若考生数学意识强,能快速转化成不等式,很快就能得到答案.第21题函数导数,第一问不难,直接求导,判断增减性,第二问关键是利用第一问结论,巧妙转化,判断零点的范围,本题考查学生的探究创新能力和运算转化能力,有很好的区分度.选做22题考查三角形相似,求证四点共圆与以往直接考察相交弦,切割线定理不同.第23题极坐标参数方程比较常规,第24题不等式也比较常规.   总之,在新课程标准下,今年高考数学试题全国卷(Ⅱ)在体现新课标理念、试卷结构、题型设置以及命题风格上都保持了相对的稳定,在全面检测双基的同时,特别注重对思想方法与创新能力的考查,强调通性通法,淡化技巧,稳中求变,锐意创新,这正是符合新时代的教学理念.
  二、试题对今后教与学的几点思考
  (1)试题再一次说明高三复习课还是应该立足于中档基础题,回归课本,力求知识的系统和全面,以求学生较熟练地掌握基本概念、基本方法,基本规律,基本题型等.
  (2)在落实了基础的前提下,要引导学生能尽量地上升到一定的分析问题、转化问题、解决问题的能力层面.
  (3)考生审题不清,思维定势,写题过程不规范;不注意细节,考虑问题不全面;基本的变形、转化手段缺乏等弱点是历届高考数学试卷中存在的较为普遍的现象,鉴于此,规范的板书示范应该贯穿于整个教学过程之中.
  (4)高三一年检测次数较多,检测内容特别是一轮复习阶段应根据教学进度作适当延展命题,既要促优,又要考虑大面积的中差生,查漏补缺,提高学生的学习兴趣,对外来试题要和教学实际相结合,切忌整卷搬用,要更好地甄别,删增重组,既有目标又有侧重点的检测.
  (5)统揽文理全卷,仔细品味传递了一个重要信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩.高中数学教学要让学生感受到基础知识和基本技能的重要性,要引导学生学会在“看、做、想、研”的基础上强化训练,方能获得较好的应试效果.
  三、2017年高考数学命题趋势预测
  《考试大纲》明确规定了考试性质、考试要求、考试内容、考试形式与试卷结构,并给出了题型示例.在考试性质中明确指出:高考除了具有一定的信度、效度,还要有一定的区分度和适当的难度.数学学科考试要发挥数学作为基础学科的作用,既重视考查中学数学知识掌握的程度,又注重考查进入高校继续学习的潜能.在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,在强调综合性的同时,也要注重试题的层次性,合理调控综合程度,坚持多角度、多层次的考查.由《考试大纲》及2016年全国高考数学卷Ⅱ,预测2017年高考数学命题有以下两种趋势.
  1.课本习题拓展化
  教材例习题的设计新颖别致,难度接近高考,颇有拓展、开发和挖掘的余地和空间. 2016年全国高考数学卷Ⅱ中,有相当一部分小题源于教材,综合题也是由课本例、习题的组合、肢解、嫁接、加工或延拓而成.因此,要充分发挥课本例、习题的基础性、典型性、示范性的功能作用.
  2.研究性学习成果化
  如何检测“研究性课题”的教学效果,考查学生在“研究性学习”中逐步养成的探索创新精神,这是高考命题的一个难点.2016年全国高考数学卷Ⅱ对此做了十分有益的探索和实践,如文科的第8、12、16、17(Ⅱ)、21(Ⅱ)题等,理科的第5、10、12、15、20(Ⅱ)、21(Ⅱ)题等,都颇有研究性的味道,它们形式活泼,取材新颖,可谓匠心独运,很好地考查了新课改研究性学习的新理念.可以预测,2017年高考数学试题将会更加注重倡导研究性学习,更进一步显现研究性学习的特点.
  四、2017年高考数学复习备考建议
  2017年高考数学还将采用全国卷 ,为了有效备考,首先要认真研究《考试大纲》,提高复习备考的针对性.《考试大纲》一般在每年的3月初公布,不过连续几年的数学《考试大纲》的变动微乎其微.因此,在《考试大纲》未公布前,可先参阅2016年的《考试大纲·课标Ⅱ》,从宏观上准确掌握《考试大纲·课标Ⅱ》中的精神和考试性质,准确掌握考试的内容,做到复习时不超纲,不做无用功;从微观上细心推敲高考内容三个不同层次的要求,要准确掌握哪些内容是要求了解的,哪些内容是要求理解的,哪些内容是要求掌握的,哪些内容是要求灵活应用的.细心推敲考查的数学思想和数学方法各有哪些,细心推敲要考查的四种能力. 想方设法诱导学生:学会自信,充满动力备考;学会拼搏,加足马力备考;学会计划,周密安排备考;学会总结,不断优化备考;学会选择,突出重点备考;学会迁移,抓住根本备考;学会循序,遵循规律备考;学会“弹琴”,协调关系备考;学会自主,主动自觉备考;学会考试, 镇定自如备考. 在具体操作上,应尽力做到以下几点.
  1.深化基础知识,挖掘教材潜力
  从基础谋发展,课本是根本,是高考试题的主要知识载体,是高考命题的生长地,是《考试大纲》制订的主要依据.纵观近几年的高考试题,多数试题源于教材,即便是综合题也是教材例、习题的加工和拓展,充分表现出教材的基础作用,教材中的许多习题与例题蕴涵着重要的数学思维方法和思想精髓. 夯实基础,回归课本,开放思维,在复习中要注意总结、提炼并灵活运用.
  2.加强对典型问题的研讨,提高解题效率近几年数学高考题依据《考试大纲》,在努力保持连续稳定的前提下,在改革中发展,在探索中创新,每年都有一些背景新颖、内涵深刻、富有新意的试题,逐步推出了应用题、探索题、阅读理解题、图表信息题等.复习中应加强并通过对典型问题的研讨,探求试题的一般规律,即通性通法,学会举一反三,触类而旁通.
  3.掌握解决数学问题的通法
  所谓通性通法就是解决问题的基本方法,是应该重点掌握的方法,但不是每一道题都需要通性通法来解决.高考试题一般不追求特殊技巧,着重在“通性、通法”上大作文章.总结数学学科中解决问题的基本思想和方法,重点放在有价值的常规方法的应用上,特别是教材中每章知识所给出的解决问题的一般方法.
  4.深刻理解数学思想方法,把握数学学科特点
  数学思想方法是数学知识在更高层次上的抽象与概括,是数学知识的精髓,是数学概念、理论的相互联系和本质所在,它蕴含在数学知识发生、发展和应用的过程中,是由知识向能力转化的重要桥梁,只有深刻理解并能熟练地运用数学思想方法,才能把数学的知识与技能转化为分析问题和解决问题的能力,才能体现数学学科的特点,才能形成良好的数学素养.《考试大纲》中所涉及的数学方法有:配方法、消元法、换元法、待定系数法、归纳法、坐标法、参数法、类比法、特殊法、一般法,观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等.数学思想有:函数与方程思想、数形结合思想、分类讨论思想和转化(化归)思想等.建议在每轮复习中,想方设法诱导学生深刻体会.
  5.精选考题,加强练习
  纵观近几年全国高考试题及各省市高考模拟试题等,可以说都是各地数学命题专家集体智慧的结晶,是对《考试大纲》的具体且权威的诠释,具有很好的导向性和示范性,是十分珍贵的复习资料.在复习中根据学情有针对性的精选一些中低档题并适当拓展或超前,以课本例习题的变式,特别是近几年的全国课标卷的变式为载体做好滚动检测,诱导学生认真演练,建议基础小题保分练,经典小题强化练,易错小题辨析练,高频考题保温练,创新小题技能练,中档大题规范练,整合大题纵横练,压轴大题突破练.练思维练规范,及时反馈,发现不足,对点补救.诱导学生记录心得体会,分析错解原因,再学失分考点,写下心路历程.在总结中进步,在反思中提升.这对切实提高学生的数学能力和数学素养肯定是大有裨益.
  对于决战2017年高考学子,祝愿新高三学子能够经历高三一年风雨,为高考打下坚实的基础,在2017年高考中取得最最优异的成绩.
  (收稿日期:2015-07-12)
其他文献
三角函数是历年高考数学中的必考的知识,与三角函数有关的考点出现的概率基本上是百分之百,每年必考、每省市必考.本文通过综合分析近年出现在全国各个省市的高考数学试题中的和三角函数有关的题目,对高考中三角函数考题的考查方式及解析方法进行归纳总结,以供读者学习参考.  一、考纲要求  《2016年普通高等学校招生全国统一考试大纲(数学)》对于三角函数这一知识点要求如下:①理解任意角三角函数(正弦、余弦、正
期刊
李雪松 设计    [原文]    外祖母家有一片很大很大的菜园。春天一到,最先种上的是菠菜、生菜和白菜,之后种香菜、水萝卜和土豆,再之后种那些爬蔓的植物:豆角、倭瓜、黄瓜等。当然,如果弄到茄子秧、柿子秧、辣椒秧,它们也一定会被恰到好处地栽种在院子里,那时候菜园中的蔬菜品种可就丰富多彩了。  外祖母对外祖父说:“你去给园子锄锄草。”  我便跟着外祖父到园子中锄草。  外祖父对外祖母说:“你去园子里
期刊
摩擦力是高中物理学习中最难、最重要的内容之一,也是历年高考中的热点和难点之一.学生对摩擦力感到困难和解题出错的最主要原因是受到日常生活经验的影响,以及对摩擦力的理解不深刻,不全面,因而常常产生了一些错误的认识,并在后面的力学甚至电学等内容中也出现很多与摩擦力相关的错误.因此,笔者根据自己多年的教学经验,总结了“十个不一定”,觉得对理解摩擦力很有裨益,非常实用,学生在求解涉及摩擦力的问题中出现的错误
期刊
在量的方面把微观粒子的数目和宏观物质的质量联系起来,是整个化学计算的枢纽.自高考以来对NA的考查可以说年年必考,在全国各地高考中均保持良好的稳定性和连续性.常常在题中设置“陷阱”,具有较好的区分度.若要更好更准确地解决此类问题,就要警惕题中设置的“陷阱”,下面就以近几年的几道高考题举例说明.  例1(2013新课标全国卷Ⅱ)  NA为阿伏加德罗常数的值.下列叙述正确的是().  A. 1.0L 1
期刊
质量检测是高考前的大练兵,2016年泉州市质检试卷给出了许多有价值的题目. 这是高考复习时进行思维训练,提升解题能力的宝贵资源. 例如,试卷中的选择题第12题,就是一道好题,极具思维价值.结合在考场上做题,在试卷讲评课上倾听老师的解析,课后对试题的反思,以及由此所获取的数学思想方法指导后继解题等一系列经历,谈谈笔者的一些探索与感悟.
期刊
数列是历年高考数学中的必考的知识,纵观每年各个省市的高考数学试题,可以发现对于数列的考查出现的概率为百分百,由此可见,数列在高考中的重要性不言而喻.本文通过分析2016年全国各个省市的高考数学试题中出现的数列考题,对高考中数列的考查方式及解析方法进行归纳总结,希望能够给一线教师教学以及学生复习提供帮助.  一、考纲要求  《2016年普通高等学校招生全国统一考试大纲(数学)》中对于数列的掌握程度要
期刊
在遗传学试题中,最难的应该是遗传概率计算题了.虽然解决遗传概率计算题的方法有很多,但若能找到一个最简单高效的方法,无疑对解题能力的提高是最有帮助的,而解决问题的最高境界应该是简单、快捷,且不失准确.下面笔者就遗传概率计算中的几个高频难点问题的解决方法作一些介绍.  一、单位“1”的改变对概率计算的影响  在生物性状的遗传中,子代的基因型、表现型、产生的配子等事件都可以看成单位“1”,其中的某种基因
期刊
中学教材中关于DNA分子复制的特点一般提到两点:半保留复制、边解旋边复制.随着现代生物科技的突飞猛进,发现DNA分子复制还有许多新的特点,如真核生物DNA分子的多起点双向复制,所合成的两条子链方向相反等.在近年的高考中,有关DNA分子复制的试题常以新情境、信息给予题的形式出现,较好地考查了学生独立收集信息、处理应用信息的能力.在平常的生物教学中,如进行相关的内容补充,还有利于培养学生的发散思维和创
期刊
过氧化物中氧元素化合价为-1價,在反应中通常显示还原性、氧化性或自身的氧化还原反应,典型代表物为Na2O2和H2O2.近两年来,衍生出另一明星物质——CaO2,它以其来源于工业生产、生活实际而在高考试题中频频上镜,现归纳CaO2常见的考查方式,以供参考.
期刊
混合物的分离这一操作,是中学化学实验基本操作中比较重要、应用极广、高考试题中出现频率极高的知识点之一,按分離过程中物质变化的类型可分为:物理方法和化学方法,物理方法是通过某种实验操作,未经过化学变化而使混合物中的各组分相互分离开来的一种方法.下面就高中阶段常用的物理方法作以归纳、探讨,供平时学习或高考复习归纳整理时作一参考.
期刊