论文部分内容阅读
为了解决基于Apriori的分类关联规则算法挖掘数值型数据时效率和准确率偏低的问题,提出基于定量关联规则树的分类及回归预测算法.采用改进的定量关联规则算法挖掘数值型数据生成关联规则库,并基于关联规则树结构实现分类及回归预测.研究结果表明:改进的Apriori定量关联规则挖掘算法提高了分类预测的准确率并降低了计算复杂度;而采用关联规则树结构可使分类与回归预测时间明显加快,提高了样本匹配学习的速度.