论文部分内容阅读
随着人民生活水平的不断进步与对美好生活的向往,人们对于个人的健康越来越重视。乳腺癌是对女性健康威胁最大的恶性肿瘤之一,对乳腺癌进行快速、精准诊断并提供个性化治疗方案已成为目前社会的迫切需求。论文使用深度学习TensorFlow框架构建前馈神经网络,根据从乳房块细针抽吸(FNA)数字化图像数据描述的细胞核特征中,分析不同维度的病理特点,预测乳腺癌是良性还是恶性。为医疗行业提供一种高效乳腺癌预测手段,具有一定的实际意义。