论文部分内容阅读
研究一类近似插值单隐层前向神经网络的逼近问题。利用Steklov平均函数,以光滑模为度量,估计了该网络对Lebesgue可积函数的逼近误差。所获结果表明:对于定义在[a,b]上的任意p(1≤p〈+∞)次Lebesgue可积函数f(x),只要隐层节点数n足够大,均有一个近似插值神经网络以任意精度逼近f(x)。