论文部分内容阅读
目的从频率域角度研究孤立性肺结节纹理特征,探讨深度置信网络对其良恶性的分类效果,达到辅助医生提高早期肺癌诊断准确率的目的。方法首先,利用Gabor小波对1012例患者的1072张孤立性肺结节CT图像提取纹理特征,用受限玻尔兹曼机对特征向量进行编码,学习数据本质特征;然后,用得到的纹理特征向量集训练深度置信网络,构建分类模型;最后,通过K折交叉验证法从准确性、ROC曲线下面积(AUC值)以及时间成本方面对本文提出的研究方法进行评估。结果经Gabor小波变换并构建DBN分类模型的准确度为83. 75%,