论文部分内容阅读
在高维非线性空间中,如何更有效地提取人脸图像的主要特征,以及如何更有效地区分不同的性别类别,已经成为性别识别中广泛关注的问题。针对这一问题,提出一种非线性流形上的性别识别算法。该算法不但能有效提取高维空间中数据点的主要特征,并且能充分挖掘出数据流形间的几何结构和判别结构,从而使不同性别之间达到最优化分类。通过ORL和Yale两个人脸数据集实验,并与PCA(Principal Components Analysis)+LDA(Linear Discriminant Analysis),PCA+SVM(