论文部分内容阅读
【摘要】非负整数是学生进入初中后,在学习有理数的分类中出现的一个知识点,常规的教学课本中,并未对非负整数包括正整数和零这一知识进行阐释,因此学生在学习时会出现不能将此概念辨析清楚的情况,影响后面的学习。新知识点的学习和理解需要针对难点,讲清重点,这样学生在学习过程中才能逐渐掌握学习方法。
【关键词】有理数 分类 非负整数 教学设计
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2019)04-0122-02
初中生自开始学习负数这一概念后,对数系的认识扩充到有理数,接下来又学习有理数的定义,学生可以从定义和性质两方面对有理数进行分类。在此学习过程中,学生不只需要能够将数分到常见的集合中,还需要理解非负数、非正数、非负整数、非正整数等几个集合的定义。其中,对于非正整数和非负整数的讲解,课本并未做完全解释,只有在做题练习的过程中会遇见此名词。如果在课堂教学中教师不对此概念进行说明,学生对于这一概念的理解是困难的。
在教学过程中,学生对非正数和非负数的理解容易,有理数中去除正数的就是非正数,去除负数的是非负数,但正因为这里的轻松理解,导致学生在接下来的非负整数和非正整数的理解上出现偏差。对于非负整数而言,“非”负整数和“非负”整数这两个不同的断句方式是学生理解的最大难点。前者可理解为不是负整数,而后者则可理解为不是负数的整数。学生常见错误是会将如0.3这样的有理数域内,不是负整数的数归在此类,而我们的非负整数集合是由在整数域中除去负整数后所剩下的正整数和零组成,同理非负数、非正数、非负整数、非正整数这四个集合在有理数域中的关系其实是可以通过表格的形式进行区分的,如表1和表2。
事实上,教师在引导学生主动学习数学概念等基础知识的教学过程时,应适当放慢讲授新知的速度,尤其是对于这种学生看不懂、说不清的问题,教师在讲解有理数的分类这一章节时,普遍采用例题来进行讲解。例题的讲解不宜过多过难,选取有针对性的正数、负数、整数、分数、正整数、正分数等,通过边讲解边列举分类的方法,带领学生先对常见数字进行分类,再引导其对非正数和非负数进行理解,并且在课堂板书上对有理数按性质分类的概念图进行补充,补充后如表1所示。学生在循序渐进的学习中掌握了原有认知数字的集合分类,就有了一定的概念基础。同理,等学生对前面两个概念理解后,再次提出非正整数和非负整数的定义,并且在板书上进行如表2补充,最重要的是将补充后表1与表2进行对比,辅导学生对二者进行区分,这样才能使学生在初次接触这四个定义后不会出现混乱的现象。下面针对有理数分类这一知识点,做一个课堂教学设计对本文进行案例展示:
一、教学目标清晰明确
有理数分类这一课堂教学内容是希望学生能够通过理解有理数的概念,懂得有理数的两种分类方法,会判别一个有理数是整数还是分数,是正數、负数、零、非负整数还是非正整数。使学生在课堂学习后能掌握这方面的知识与能力。在教学过程和方法上让学生经历对有理数进行分类的探索过程,初步感受分类讨论的思想。从学生的情感态度与价值观培养来说,教学目标是通过对有理数的学习,让学生体会到数学与现实世界的紧密联系。
二、教学重点、难点解析精准
此次课堂的教学重点就是通过学习有理数的分类,能够判别有理数是否为非负整数和非正整数。教学难点是阐释教学课本中未作解释的非负整数的概念,数集整理分类。
三、适当放缓教学过程,重点难点讲解到位:
一)知识回顾
问题1:小学学的数可以分为哪几类?(整数、分数)
问题2:引入负数后,整数除了小学学的整数外,还包含其它的整数吗?分数除了小学学的分数外,还包含其他的分数吗?(我们学过的数:正整数,负整数,零,正分数,负分数)
二)讲授新课
1.有理数的定义
引导学生对前面的数进行概括:正整数、零、负整数统称为整数;正分数和负分数统称分数。正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。
2.有理数的分类
让学生在总结出五类数的基础上,进行概括,尝试分类,通过交流和讨论,老师适当引导,逐步得出按性质和按定义的两种分类方式。按性质分类,可以将有理数分为正数、负数和0;正数再分为正整数和正分数,负数再分为负整数和负分数。按定义分类,可以将有理数分为整数、分数和0;整数再分为正整数、负整数和0,分数再分为正分数、负分数。
三)新知运用
知识补充:
非负整数:非负整数集是一种特定的集合,指全体自然数的集合.非负整数包括正整数和零。
非正整数:包括负整数和零。
非负数:包括正数和零。
非正数:包括负数和零。
此时,对前面得到的分类方式进行补充就可以得到表1与表2,但需引导学生对非负数是有理数中去除负数后所有的数,而非负整数则是整数中去除负整数后所有的数进行对比。
四)巩固知识
练习:把下列各数填入它所属的集合内:
-15.2,-6,+2.7,-90,-3.2,913,0,4,2.5
负数集合:{ ,…} 整数集合:{ ,…}
负整数集合:{ ,…} 非负整数集合:{ ,…}
五)课堂小结
本节课的内容可以归纳为以下几点:
1.本节主要学习有理数的概念,会将有理数按照一定的标准进行分类;
2.重点对非负整数这一概念进行补充讲解;
3.主要用到的思想方法是分类思想;
4.注意的问题:分类时要做到不重不漏,只要标准统一即可。
参考文献:
[1]谷春安. 数学新知教学“三要”[J]. 小学教学参考, 2001(10).
作者简介:
李艳芳(1994.09-),女,河北唐山人,汉族,硕士研究生在读,主要研究方向:学科教学(数学)。
【关键词】有理数 分类 非负整数 教学设计
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2019)04-0122-02
初中生自开始学习负数这一概念后,对数系的认识扩充到有理数,接下来又学习有理数的定义,学生可以从定义和性质两方面对有理数进行分类。在此学习过程中,学生不只需要能够将数分到常见的集合中,还需要理解非负数、非正数、非负整数、非正整数等几个集合的定义。其中,对于非正整数和非负整数的讲解,课本并未做完全解释,只有在做题练习的过程中会遇见此名词。如果在课堂教学中教师不对此概念进行说明,学生对于这一概念的理解是困难的。
在教学过程中,学生对非正数和非负数的理解容易,有理数中去除正数的就是非正数,去除负数的是非负数,但正因为这里的轻松理解,导致学生在接下来的非负整数和非正整数的理解上出现偏差。对于非负整数而言,“非”负整数和“非负”整数这两个不同的断句方式是学生理解的最大难点。前者可理解为不是负整数,而后者则可理解为不是负数的整数。学生常见错误是会将如0.3这样的有理数域内,不是负整数的数归在此类,而我们的非负整数集合是由在整数域中除去负整数后所剩下的正整数和零组成,同理非负数、非正数、非负整数、非正整数这四个集合在有理数域中的关系其实是可以通过表格的形式进行区分的,如表1和表2。
事实上,教师在引导学生主动学习数学概念等基础知识的教学过程时,应适当放慢讲授新知的速度,尤其是对于这种学生看不懂、说不清的问题,教师在讲解有理数的分类这一章节时,普遍采用例题来进行讲解。例题的讲解不宜过多过难,选取有针对性的正数、负数、整数、分数、正整数、正分数等,通过边讲解边列举分类的方法,带领学生先对常见数字进行分类,再引导其对非正数和非负数进行理解,并且在课堂板书上对有理数按性质分类的概念图进行补充,补充后如表1所示。学生在循序渐进的学习中掌握了原有认知数字的集合分类,就有了一定的概念基础。同理,等学生对前面两个概念理解后,再次提出非正整数和非负整数的定义,并且在板书上进行如表2补充,最重要的是将补充后表1与表2进行对比,辅导学生对二者进行区分,这样才能使学生在初次接触这四个定义后不会出现混乱的现象。下面针对有理数分类这一知识点,做一个课堂教学设计对本文进行案例展示:
一、教学目标清晰明确
有理数分类这一课堂教学内容是希望学生能够通过理解有理数的概念,懂得有理数的两种分类方法,会判别一个有理数是整数还是分数,是正數、负数、零、非负整数还是非正整数。使学生在课堂学习后能掌握这方面的知识与能力。在教学过程和方法上让学生经历对有理数进行分类的探索过程,初步感受分类讨论的思想。从学生的情感态度与价值观培养来说,教学目标是通过对有理数的学习,让学生体会到数学与现实世界的紧密联系。
二、教学重点、难点解析精准
此次课堂的教学重点就是通过学习有理数的分类,能够判别有理数是否为非负整数和非正整数。教学难点是阐释教学课本中未作解释的非负整数的概念,数集整理分类。
三、适当放缓教学过程,重点难点讲解到位:
一)知识回顾
问题1:小学学的数可以分为哪几类?(整数、分数)
问题2:引入负数后,整数除了小学学的整数外,还包含其它的整数吗?分数除了小学学的分数外,还包含其他的分数吗?(我们学过的数:正整数,负整数,零,正分数,负分数)
二)讲授新课
1.有理数的定义
引导学生对前面的数进行概括:正整数、零、负整数统称为整数;正分数和负分数统称分数。正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。
2.有理数的分类
让学生在总结出五类数的基础上,进行概括,尝试分类,通过交流和讨论,老师适当引导,逐步得出按性质和按定义的两种分类方式。按性质分类,可以将有理数分为正数、负数和0;正数再分为正整数和正分数,负数再分为负整数和负分数。按定义分类,可以将有理数分为整数、分数和0;整数再分为正整数、负整数和0,分数再分为正分数、负分数。
三)新知运用
知识补充:
非负整数:非负整数集是一种特定的集合,指全体自然数的集合.非负整数包括正整数和零。
非正整数:包括负整数和零。
非负数:包括正数和零。
非正数:包括负数和零。
此时,对前面得到的分类方式进行补充就可以得到表1与表2,但需引导学生对非负数是有理数中去除负数后所有的数,而非负整数则是整数中去除负整数后所有的数进行对比。
四)巩固知识
练习:把下列各数填入它所属的集合内:
-15.2,-6,+2.7,-90,-3.2,913,0,4,2.5
负数集合:{ ,…} 整数集合:{ ,…}
负整数集合:{ ,…} 非负整数集合:{ ,…}
五)课堂小结
本节课的内容可以归纳为以下几点:
1.本节主要学习有理数的概念,会将有理数按照一定的标准进行分类;
2.重点对非负整数这一概念进行补充讲解;
3.主要用到的思想方法是分类思想;
4.注意的问题:分类时要做到不重不漏,只要标准统一即可。
参考文献:
[1]谷春安. 数学新知教学“三要”[J]. 小学教学参考, 2001(10).
作者简介:
李艳芳(1994.09-),女,河北唐山人,汉族,硕士研究生在读,主要研究方向:学科教学(数学)。