论文部分内容阅读
应用粒子群优化算法(particle swarm optimization,PSO)训练多层前馈(back propagation,BP)神经网络,提出毛竹导热系数的PSO-BP模型,将神经网络的学习过程映射为粒子群体的迭代寻优过程,达到优化神经网络权值及阈值的目的。结果表明:毛竹导热系数PSO-BP模型在泛化性能、拟合精度、训练及验证误差等方面均优于标准BP网络模型。