论文部分内容阅读
多标签分类问题已广泛应用于文本分类、图像分类、生物基因功能分类、视频语义注释等.相比较于单标签分类,多标签分类更符合真实世界的客观规律.然而,已有的卷积神经网络多标签分类算法没有探究标签之间相关性,为此提出了一种基于标签相关性卷积神经网络多标签分类,即计算标签之间共现相似度方法,同时为了解决卷积神经网络预测精度高,训练时间长的缺点,引入了迁移学习的方法加快了模型的训练时间.实验表明,提出的算法优于传统的多标签分类算法.