论文部分内容阅读
文章分别使用基于像元和基于对象的KNN分类器算法对1024*1024像元大小的宁夏中卫市地区15m空间分辨率Landsat8融合影像进行分类,比较二者分类效率和准确率,探讨其在影像分类上的不同。研究表明无论是基于对象还是基于像元的KNN分类器算总体分类精度都在90%以上。但基于对象的KNN分类器算法相比基于像元的总体分类精度提高1.9%,Kappa系数提高0.026。且使用相同的训练样本进行训练和分类,基于对象的KNN分类器算法仅耗时0.281秒,而基于像元的KNN分类器算法耗时53分7.275秒。