论文部分内容阅读
基于模型辨识的机械有效故障特征提取方法中输入信号难以确定,以及机械设备运行过程中具有信息量大、非平稳、特征重复再现性差的特点,结合非线性时序模型盲辨识和因子隐Markov模型,提出一种基于非线性时序模型盲辨识的特征提取的因子隐Markov模型识别方法,并应用到旋转机械升降速过程故障诊断中。同时还与基于Fourier变换、小波变换的特征提取的因子隐Markov模型识别方法进行比较,试验结果表明该方法是有效的。