论文部分内容阅读
针对视频人体动作识别中动作信息利用率不高、时间信息关注度不足等问题,提出了一种基于紧耦合时空双流卷积神经网络的人体动作识别模型。首先,采用两个2D卷积神经网络分别提取视频中的空间特征和时间特征;然后,利用长短期记忆(LSTM)网络中的遗忘门模块在各采样片段之间建立特征层次的紧耦合连接以实现信息流的传递;接着,利用双向长短期记忆(Bi-LSTM)网络评估各采样片段的重要性并为其分配自适应权重;最后,结合时空双流特征以完成人体动作识别。在数据集UCF101和HMDB51上进行实验验证,该模型在这两个数据