论文部分内容阅读
为了使构造的决策树更简单,规则更容易被理解且精度更高,文章基于粗糙集理论提出了一种对属性约简及泛化的多变量决策树算法。该方法采用条件属性的加权平均粗糙度这个指标来选择测试属性构造决策树。实验表明该方法较ID3算法得到的决策树更小且分类准确率更高。文章还展望用核属性以外的条件组合属性作测试属性构造更简化的多变量决策树。