论文部分内容阅读
Effect of Co substitution and annealing treatment on the formation, magnetic properties and microstructure of (NdOyTb)12.3(FeZrNbCu)81.7CoxB6(x=0-15) ribbons prepared by rapid quenching and subsequent annealing was systematically investi-gated by means of differential scanning calorimeter (DSC), X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM) and vibrating sample magnetometer (VSM). Phase analysis revealed single-phase material. The remanence polarization Jr and maximum en-ergy product (BH)max increased with increasing x from 0 to 12 and then decreased for x=lS. The intrinsic coercivity Hci of (NdDyTb)12.3 (FeZrNbCU)81.7-xCoxB6 ribbons optimally processed decreased from 1308.7 kA/m for x=0 to 817.4 kA/m for x=15. Optimum magnetic properties with Jr=1.041 T, Hci=944.9 kA/m and (BH)max=155.1 kJ/m3 were achieved by annealing melt-spun ribbon (x=-12) at 675℃ for 10 min. There was no significant influence of Co substitution on microstructure.