引导学生在对比中寻找捷径

来源 :小学教学(数学版) | 被引量 : 0次 | 上传用户:xfjs08jx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
事实上,选择以最小公倍数作为公分母的学生,其计算正确率明显高于以两个异分母的乘积(公倍数)作为公分母的学生,主要是后者由于通分后分子和分母的数比较大,导致计算难度增加,或者很难找到计算结果中分子和分母的公因数,没有对计算结果进行约分或约分不彻底,也就不符合在分数运算中“计算结果能约分的要约成最简分数”的要求。例如:17+314=1498+2198=3598,笔者也曾在错题评析时,建议学生通分时以最小公倍数作为公分母,但仍有学生我行我素,他们认为“用两个分母的乘积(公倍数)作为公分 In fact, the student who chooses the least common multiple as the common denominator has a significantly higher correct rate than the student whose common denominator is the product of the two different denominators (mainly, the latter is the numerator of the denominator) Large, resulting in increased computational difficulty, or difficult to find the numerator and denominator of the common factor in the calculation results, there is no calculation of the results of about points or about points is not complete, it does not meet in the fractional operation ”Calculation results can be divided Request to be the minimum score “requirement. For example: 17 + 314 = 1498 + 2198 = 3598, the author has also been in the wrong assessment, it is recommended that students pass the time to the least common multiple as the common denominator, but there are still students go its own way, they think ”product of the two denominators Common multiple) as the centimeter
其他文献
在与学生一起学习的过程中,我常想,不管是新授课还是练习课,都需要我们教师读懂学生的真实想法,找准学生思维的起点与知识的盲点,并在此基础上采取相应的教学决策,以改进学生