论文部分内容阅读
目标检测是计算机视觉领域的基本问题之一,基于监督学习的目标检测算法是当前目标检测的主流算法。在现有的研究中,高精度的图像标记是强监督学习目标检测能够获得良好性能的前提。然而,实际场景中背景的复杂性以及目标的多样性等因素,使得图像标注任务非常费时费力。随着深度学习的不断发展,如何通过低成本的图像标注获得良好的训练结果成为当前的研究重点。文中主要综述了基于图像级别标签的弱监督目标检测算法,首先介绍了目标检测的发展历程,主要基于强监督学习对目标检测算法进行了阐述并指出其训练数据的局限性;然后从图像分割、多示例学