论文部分内容阅读
摘 要:在如今电网智能化发展的背景下,智能化的电力系统能够在应用过程中促使我国电力系统应用的高质量发展,从而提高我国电力技术在国际市场上的竞争力。在我国智能电网的运作过程中,诸多非线性的设备应用会使线路运行的电压损失增大,并且产生一定电能的损耗。而无功补偿技术的应用,能够通过一定的装置来进行补偿,从而降低智能电网的损耗,提高供电效率,为大众提供优质的电力能源服务。
关键词:电气自动化;智能;无功补偿;技术
电力在我国生产生活中属于十分重要的能源,而在电源传输的过程中由于室外温度和传输距离的影响,电压会出现不稳定变化,进而会对生产用电与生活用电造成影响。因此,有必要在电力自动化中运用无功能补偿技术来提供稳定电源。
1无功补偿技术的特点
1.1电压优先,自动补偿
无功补偿技术能够借助一定的技术设备来进行相应的系统性的运作与管理。无功补偿技术在应用过程中基于一定的电压质量来进行自动投切电容器,当电压超出最高设定值时切除电容器组,从而保障电压的合作与正常的运作;而在低于设定值时,在保证正常运作的情况下逐步投入电容器,保障基本的电压运作。在这种电压优先的情况下,无功补偿技术能够基于负荷无功功率大小自动投切电容器组,保障系统处于一种无功补偿的状态。
1.2模糊控制,综合保护
当系统化的运作处于正常的电压范围之中,配置环境、器械的受电情况、动作时间、用户对动作次数的限制等会引起控制过程中的错误与问题,这就需要在控制中通过模糊控制来进行相应的技术性的操作与应用,从而在操作过程中实现系统化的自动运作,避免出现盲区式问题。另外,该技术能够通过一定的补偿来实现装置的开关保护以及运作保护,从而在运作过程中通过实现综合因素的调控来实现整个系统的规范化运作。
2智能无功补偿技术在电力自动化中的应用
2.1选择合适的智能无功补偿技术
在选择合适的智能无功补偿技术的过程中,应该严格把握以下三个要求:(1)以固定补偿为主;(2)以分散补偿为主;(3)以低压补偿为主。固定补偿是不以线路使用情况作为参考而投入固定量的补偿方式,与调节补偿相比,固定补偿更稳定,但是当使用力率较高时,补偿会过量,而使用力率较低时,补偿会不足。分散补偿又称分组补偿,其工作原理是利用电容器进行补偿,电容器在放电状态与充电状态之间不停地进行变换,以此来对电力自动化系统进行无功补偿。分散补偿经济成本高,不适合在大型电网系统中使用,仅在小型工厂生产用电中投入使用。低压补偿,能够减少电流在传输过程中的损耗,而且在电阻器件相同是情况下,低压电能产生的电流更小,对用电设备与电气原件造成的损害会大大降低。电网系统复杂繁复,在选择智能无功补偿技术时,一定要对电网系统的情况进行实地考察,根据实际条件,在三种智能无功补偿技术中选择合适的一种。这样不仅能够提高电网系统智能无功补偿的效率,还能降低电网系统后期维护的成本。
2.2投切开关
以用途出发,确定投切开关的无功补偿装置功能,由于其重点在于控制设备断路实现对无功功率的抵消与降低,所以要分类型实施应用:
2.2.1过零触发固态继发器类型与设备投切速度关联,速度快,对无功功率抵消率高且设备受损率低;速度慢,则相反。造成此现象的原因来自投切开关对电网的冲击而生成的谐波。
2.2.2机电一体智能真空开关类型,主要是在低压真空条件下对电容器回路进行控制,不会产生电压差,设备受损率低。效果优于过零触发固态继发器类型。
2.2.3机电一体复合型智能开关类型,它由改造过零触发固态继发器类型而来,主要是通过并联交流接触器与固态继电器实现,本质上属于优势联合,能够保障投切速度高、设备受损率低的应用效果。
2.2.4实际应用中要求以电力系统综合为主,按照类型、特点、优势进行合理选用。
2.3配电线路补偿
配电线路的无功补偿主要是通过在线路上安装一定的电容器来进行补偿应用,这种应用模式能够提供线路与公用变压器所需要的无功功率,从而保障线路传输的稳定性。在应用过程中,由于电网线路复杂,需要在不同位置设置相应的电容器进行补偿,但是这种线路的补偿点的设置不宜过多,补偿的容量也应保持在一个相对合理而稳定的范围内,从而避免因为补偿过多而产生过度补偿的现象,影响整个配电线路网的应用效能。比如在应用过程中采用熔断器来进行配电线路安全与保护的检测,能够对线路的电流与电压进行保护,以此来保障基本的电路运作效率。
2.4挑选合理的智能无功补偿控制器
为了提高智能无功补償技术在整个电力自动化中的运行效率,还需要选择合适的无功补偿控制器。智能无功补偿控制器的功能十分复杂,主要是对电力设备的智能无功补偿操作进行控制与调节。一部分控制器在设计时采取了一定的保护机制,这样不仅能够对电力设备本身进行保护,还能保护整个电力系统与用电设备。在智能无功补偿技术中投入使用的控制器主要有智能无功功率控制器与智能无功功率因数控制器。其中智能无功功率控制器性能优秀,使用过程中稳定性极高,并且能够对设备本身的使用情况进行监控,一旦超出核定功率,设备会自动降低使用功率或者停止工作。这种智能无功补偿控制器价格低廉,但是使用寿命较短,需要经常进行更换与维护。而智能无功功率因数控制器操作简单,操作难度低,但是设备在投入使用的过程中,会受到电压谐波与电流谐波的影响而出现振荡与噪音。在安装智能无功补偿控制器时,应该根据实际情况选择高压安装或者低压安装。在安装智能无功补偿控制器时,一定要对控制器的状态进行测试,分别通高压电流与低压电流,并保持通电时长在六至八小时,如果在这段时间内,智能无功补偿控制器能够正常工作,则视为该控制器为合格设备,然后进行安装。因此,在选择智能无功补偿控制器时,也应该根据实际工程需要与外界环境条件进行选择,只有这样才能真正实现高效的智能无功补偿。
2.5跟踪补偿
跟踪补偿是一种将无功补偿装置作为控制保护装置,将低压电容器补偿在大用户0.4kV母线上并实现跟踪监测的一种补偿方式。这种运作形式主要适用于100kVA及以上的专用配电变压器用户,能够实现随机补偿与随器补偿方式的功能与性质的替代,补偿的效果也相对较好;且补偿的过程中能够与智能电网充分结合,运作高效灵活,运作维护的工程量也相对较少,电容器的寿命也相对较长,能够保障长期的稳定运作。与此同时,这种运作模式虽然能够较为高效地实现跟踪与应用,并且对于无功负荷的变化进行全面的数据监测,从而在运作的过程中实现补偿,但是其运作方式在应用过程中成本较高,投入较大,且整个补偿运作装置的安装与设置程序相对复杂,若其中的某一个元件损坏,则会对整个设备电容器的投切效果产生影响。
3结论
通过优化电力设备与电网系统开改进电力自动化技术。根据电网系统的构建选择合适的智能无功补偿技术,然后根据电路的实际用途,在生产用电与生活用电上加以区分,安装适合的智能无功补偿投切开关与控制器,才能更好地发挥智能无功补偿技术的效用。
参考文献:
[1]陈雨.智能无功补偿技术在电力自动化中的应用分析[J].电子测试,2019(Z1):150-151.
[2]王腾飞.基于投切门限值的无功补偿控制策略研究[J].电子技术,2019,44(08):31-34.
(沈阳斯沃电器有限公司,辽宁 沈阳 110122)
关键词:电气自动化;智能;无功补偿;技术
电力在我国生产生活中属于十分重要的能源,而在电源传输的过程中由于室外温度和传输距离的影响,电压会出现不稳定变化,进而会对生产用电与生活用电造成影响。因此,有必要在电力自动化中运用无功能补偿技术来提供稳定电源。
1无功补偿技术的特点
1.1电压优先,自动补偿
无功补偿技术能够借助一定的技术设备来进行相应的系统性的运作与管理。无功补偿技术在应用过程中基于一定的电压质量来进行自动投切电容器,当电压超出最高设定值时切除电容器组,从而保障电压的合作与正常的运作;而在低于设定值时,在保证正常运作的情况下逐步投入电容器,保障基本的电压运作。在这种电压优先的情况下,无功补偿技术能够基于负荷无功功率大小自动投切电容器组,保障系统处于一种无功补偿的状态。
1.2模糊控制,综合保护
当系统化的运作处于正常的电压范围之中,配置环境、器械的受电情况、动作时间、用户对动作次数的限制等会引起控制过程中的错误与问题,这就需要在控制中通过模糊控制来进行相应的技术性的操作与应用,从而在操作过程中实现系统化的自动运作,避免出现盲区式问题。另外,该技术能够通过一定的补偿来实现装置的开关保护以及运作保护,从而在运作过程中通过实现综合因素的调控来实现整个系统的规范化运作。
2智能无功补偿技术在电力自动化中的应用
2.1选择合适的智能无功补偿技术
在选择合适的智能无功补偿技术的过程中,应该严格把握以下三个要求:(1)以固定补偿为主;(2)以分散补偿为主;(3)以低压补偿为主。固定补偿是不以线路使用情况作为参考而投入固定量的补偿方式,与调节补偿相比,固定补偿更稳定,但是当使用力率较高时,补偿会过量,而使用力率较低时,补偿会不足。分散补偿又称分组补偿,其工作原理是利用电容器进行补偿,电容器在放电状态与充电状态之间不停地进行变换,以此来对电力自动化系统进行无功补偿。分散补偿经济成本高,不适合在大型电网系统中使用,仅在小型工厂生产用电中投入使用。低压补偿,能够减少电流在传输过程中的损耗,而且在电阻器件相同是情况下,低压电能产生的电流更小,对用电设备与电气原件造成的损害会大大降低。电网系统复杂繁复,在选择智能无功补偿技术时,一定要对电网系统的情况进行实地考察,根据实际条件,在三种智能无功补偿技术中选择合适的一种。这样不仅能够提高电网系统智能无功补偿的效率,还能降低电网系统后期维护的成本。
2.2投切开关
以用途出发,确定投切开关的无功补偿装置功能,由于其重点在于控制设备断路实现对无功功率的抵消与降低,所以要分类型实施应用:
2.2.1过零触发固态继发器类型与设备投切速度关联,速度快,对无功功率抵消率高且设备受损率低;速度慢,则相反。造成此现象的原因来自投切开关对电网的冲击而生成的谐波。
2.2.2机电一体智能真空开关类型,主要是在低压真空条件下对电容器回路进行控制,不会产生电压差,设备受损率低。效果优于过零触发固态继发器类型。
2.2.3机电一体复合型智能开关类型,它由改造过零触发固态继发器类型而来,主要是通过并联交流接触器与固态继电器实现,本质上属于优势联合,能够保障投切速度高、设备受损率低的应用效果。
2.2.4实际应用中要求以电力系统综合为主,按照类型、特点、优势进行合理选用。
2.3配电线路补偿
配电线路的无功补偿主要是通过在线路上安装一定的电容器来进行补偿应用,这种应用模式能够提供线路与公用变压器所需要的无功功率,从而保障线路传输的稳定性。在应用过程中,由于电网线路复杂,需要在不同位置设置相应的电容器进行补偿,但是这种线路的补偿点的设置不宜过多,补偿的容量也应保持在一个相对合理而稳定的范围内,从而避免因为补偿过多而产生过度补偿的现象,影响整个配电线路网的应用效能。比如在应用过程中采用熔断器来进行配电线路安全与保护的检测,能够对线路的电流与电压进行保护,以此来保障基本的电路运作效率。
2.4挑选合理的智能无功补偿控制器
为了提高智能无功补償技术在整个电力自动化中的运行效率,还需要选择合适的无功补偿控制器。智能无功补偿控制器的功能十分复杂,主要是对电力设备的智能无功补偿操作进行控制与调节。一部分控制器在设计时采取了一定的保护机制,这样不仅能够对电力设备本身进行保护,还能保护整个电力系统与用电设备。在智能无功补偿技术中投入使用的控制器主要有智能无功功率控制器与智能无功功率因数控制器。其中智能无功功率控制器性能优秀,使用过程中稳定性极高,并且能够对设备本身的使用情况进行监控,一旦超出核定功率,设备会自动降低使用功率或者停止工作。这种智能无功补偿控制器价格低廉,但是使用寿命较短,需要经常进行更换与维护。而智能无功功率因数控制器操作简单,操作难度低,但是设备在投入使用的过程中,会受到电压谐波与电流谐波的影响而出现振荡与噪音。在安装智能无功补偿控制器时,应该根据实际情况选择高压安装或者低压安装。在安装智能无功补偿控制器时,一定要对控制器的状态进行测试,分别通高压电流与低压电流,并保持通电时长在六至八小时,如果在这段时间内,智能无功补偿控制器能够正常工作,则视为该控制器为合格设备,然后进行安装。因此,在选择智能无功补偿控制器时,也应该根据实际工程需要与外界环境条件进行选择,只有这样才能真正实现高效的智能无功补偿。
2.5跟踪补偿
跟踪补偿是一种将无功补偿装置作为控制保护装置,将低压电容器补偿在大用户0.4kV母线上并实现跟踪监测的一种补偿方式。这种运作形式主要适用于100kVA及以上的专用配电变压器用户,能够实现随机补偿与随器补偿方式的功能与性质的替代,补偿的效果也相对较好;且补偿的过程中能够与智能电网充分结合,运作高效灵活,运作维护的工程量也相对较少,电容器的寿命也相对较长,能够保障长期的稳定运作。与此同时,这种运作模式虽然能够较为高效地实现跟踪与应用,并且对于无功负荷的变化进行全面的数据监测,从而在运作的过程中实现补偿,但是其运作方式在应用过程中成本较高,投入较大,且整个补偿运作装置的安装与设置程序相对复杂,若其中的某一个元件损坏,则会对整个设备电容器的投切效果产生影响。
3结论
通过优化电力设备与电网系统开改进电力自动化技术。根据电网系统的构建选择合适的智能无功补偿技术,然后根据电路的实际用途,在生产用电与生活用电上加以区分,安装适合的智能无功补偿投切开关与控制器,才能更好地发挥智能无功补偿技术的效用。
参考文献:
[1]陈雨.智能无功补偿技术在电力自动化中的应用分析[J].电子测试,2019(Z1):150-151.
[2]王腾飞.基于投切门限值的无功补偿控制策略研究[J].电子技术,2019,44(08):31-34.
(沈阳斯沃电器有限公司,辽宁 沈阳 110122)