论文部分内容阅读
Computer simulation codes were developed based on a proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings (CASM-3D for Windows). Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings under a centrifugal force field than that only under the gravity. A “return back” mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section precision castings.
Computer simulation codes were developed on a proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings (CASM-3D for Windows). Sample simulations were implemented for mold filling processes of precision titanium castings under gravity The calculation results show that the alloy melt has a much stronger mold filling ability for thin section castings under a centrifugal force field than that only under the gravity. A “return back ” mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section precision castings.