论文部分内容阅读
为了利用计算机视觉技术准确检测老年人的跌倒状况,针对现有跌倒检测算法中人为设计特征造成的不完备性以及跌倒检测过程中前后景分离困难、目标混淆、运动目标丢失、跌倒检测准确率低等问题,提出了一种融合人体运动信息的深度学习跌倒检测算法对人体跌倒状态进行检测。首先,通过改进YOLOv3网络进行前景与背景的分离,并根据YOLOv3网络的检测结果对前景人体目标进行最小外接矩形标记;其次,分析人体跌倒过程中的运动特征,将人体运动特征向量化并通过Sigmoid激活函数转化为0到1之间的运动权重信息;最后,通过全连接层