论文部分内容阅读
向量空间模型是最常用的信息检索模型,它根据词频来计算文档之间的相关度,这种方法虽然能够满足用户的基本检索需求,但是对于检索要求较高的用户,其效果仍然不甚理想。文中在向量空间模型的基础上,首先通过领域本体和上层本体来计算特征词项之间的相似度,据此得出与查询词相关的词,在求词项频率和逆文档频率时考虑这些词,然后引入了词序相关度和词语相邻相关度这两个概念,把特征项的位置关系也考虑进来。实验结果表明,文中提出的模型相比原始向量空间模型,在准确率上有了较大的改善。这完全说明,与原始向量空间模型相比,文中提出的检索模