Deep 3D reconstruction:methods, data, and challenges

来源 :信息与电子工程前沿(英文版) | 被引量 : 0次 | 上传用户:l_zhijie1234
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Three-dimensional (3D) reconstruction of shapes is an important research topic in the fields of computer vision, computer graphics, pattern recognition, and virtual reality. Existing 3D reconstruction methods usually suffer from two bottlenecks: (1) they involve multiple manually designed states which can lead to cumulative errors, but can hardly learn semantic features of 3D shapes automatically; (2) they depend heavily on the content and quality of images, as well as precisely calibrated cameras. As a result, it is difficult to improve the reconstruction accuracy of those methods. 3D reconstruction methods based on deep learning overcome both of these bottlenecks by automatically learning semantic features of 3D shapes from low-quality images using deep networks. However, while these methods have various architectures, in-depth analysis and comparisons of them are unavailable so far. We present a comprehensive survey of 3D reconstruction methods based on deep learning. First, based on different deep learning model architectures, we divide 3D reconstruction methods based on deep learning into four types, recurrent neural network, deep autoencoder, generative adversarial network, and convolutional neural network based methods, and analyze the corresponding methodologies carefully. Second, we investigate four representative databases that are commonly used by the above methods in detail. Third, we give a comprehensive comparison of 3D reconstruction methods based on deep learning, which consists of the results of different methods with respect to the same database, the results of each method with respect to different databases, and the robustness of each method with respect to the number of views. Finally, we discuss future development of 3D reconstruction methods based on deep learning.
其他文献
目的:探讨景观疗养在保健疗养中的应用价值.方法:以2020年4月-2021年3月在我疗养中心疗养的80例疗养员为研究对象,均分成甲组和乙组,分别行常规疗养和景观疗养,对比效果.结果
纳米析出相种类、大小、形状、分布以及析出序列的调控是理解和设计第3、4代铝锂合金的基础。总结了铝锂合金中典型的Cu、Mg、Ag、Si合金元素作用下所产生的纳米析出相。重点
目的:探讨护理实践教学改革应用于护生带教中的效果,分析其可行性.方法:将2019年3月至2020年3月作为研究时段,将该时段我院人力资源样本库内收入的40名,进入我院接受实习的护
目的:判断气管插管麻醉见习教学中可视咽镜的价值.方法:麻醉科内实习生中参与此研究的有42名,入组样本中,行普通咽喉镜见习教学者21例属一般组,行可视咽镜见习教学者21例属实
目的 分析糖尿病护理教学实践中小组合作教学法的应用效果.方法 选取本院2019年1月-2020年10月糖尿病护理教学实践的护生60名作为研究对象,采取随机单盲法分组,每组30名,对照
To boost research into cognition-level visual understanding, i.e., making an accurate inference based on a thorough understanding of visual details, visual comm
Mobile communication is a fundamental element of information flow in modern society. The fifth- generation mobile communication system (5G) has recently entered
期刊
目的:探讨在妇产科的门诊护理中开展孕期健康教育的临床价值.方法:对照组孕妇为其提供常规护理,观察组则联合运用孕期健康教育.结果:2组孕妇护理前孕产期保健知识评分均较低P
目的:分析多元化教学法在血液内科临床实习带教中的效果.方法:随机选取本院血液内科临床实习生50例,时间为2018年9月~2019年9月.采用抽签法随机将实习生分为两组,对照组(n=25
目的:研析“教学做赛”一体化教学模式在中职护理基础教学中的应用价值.方法:甄选2019年9月~2020年9月中职护理专业学生72名,根据开展的教学模式不同,将其分为2个小组,即常规