论文部分内容阅读
摘 要:不同岩土的电阻率是不同的,电法勘探就是通过电阻率法来监控地质结构的分布情况,为地质勘测工作者提供有效信息。目前应用比较广泛的电法勘探有高密度电法、激发极化法、瞬变电磁法以及自然电场法这几种,各有各的优点,工作原理也有所差异,在勘测工作时可以根据具体情况选择合适的勘测方法。
关键词:常用电法勘探;原理;优点
地质勘探工作应用于土木工程建设、城市规划、矿产资源开采等多个领域,其技术水平提升较快。电法勘探是其中一种应用较为广泛的物理勘探方法,其科学依据为地质结构中不同岩体的电化学特性和电磁学性质的差异性,能够根据这些岩层结构的属性判断出地质情况,是一种准确性较高的勘测方法[1]。电法勘探最初是应用在矿产资源的探索中,随着其应用领域的开拓,其应用方法也在不断增加。
1.高密度电法勘探的原理及优点
地质勘探工作大多是在野外进行,采用高密度电法勘探,可以将所有的电极放置与勘测铺面,通过成远程控制的电极转换开关和电测仪,可忽略电极距和电极排列方式的差异,短时间内实现数据的自动采集。整体上来说,高密度电法勘探的工作原理就是电阻率法,通过不同岩土的电阻率差异实现对地质结构的信息探查,且随着科学技术的发展,电阻率成像技术水平也在慢慢地提升,逐步实现了平面到三维的过渡,勘测信息的解释精度大大提升。
与传统的电阻率法相比,具有高效、自动化的优势,具体来说,体现在以下幾个方面:①一次性完成电极的现场布置工作,大大提高了勘探工作效率;②点击排列方式的多样化,能够帮助勘测工作者获取更多地电断面的地质信息,提升勘测信息的丰富度;③通过科学的电法勘探仪器,实现了数据的半自动或自动化采集,实现了地质勘测有手工操作到自动化发展的跨越。
2.瞬变电磁法的原理及优点
瞬变电磁法的基本原理是电磁感应定律,利用接地线源或者是不接地回线,不断向地下发射一次脉冲磁场的方式,地下介质接收信号将形成二次感应涡流场,反馈给接地电极或线圈,从而达到探测介质电阻率的目的。在实际应用过程中,需要在地面或者是控制设置发射线圈,通以波形电流,在线圈周围空间形成瞬变的脉冲磁场,使得地下介质产生感应电流,以此获得勘探信息。
瞬变电磁法具有施工效率高的特点,而且对于低阻体高度敏感,使得它在近几年被迅速兴起,被广泛用于煤田水文地质勘探领域。很多时候为了确保勘测信息的完整性,会在一些有争议的勘测点进行深度探测,就会选择瞬变电磁法,或者是在高阻区域寻找低阻地质体,为了保证其灵敏度,也会使用该方法。但是,这种方法有一定的局限性,比如说金属结构丰富的地层中或者是表层有大量的低阻层矿化带时,就不能采用瞬变电磁法,这也是该方法虽然高效但仍不能取代其他电法勘探手段的重要原因。
3.自然电场法的原理及优点
自然电场法应用的就是地质体在氧化还原作用、扩散作用、吸附作用等自然力的作用下而形成的自然电场。有一些岩层会因为岩石颗粒的吸附作用而形成电位异常的现象,比如说石墨化片岩和渗水带。目前自然电场法被广泛应用于硫化金属、石墨矿床等电子导电型矿体的探查中国,具有工作效率高、勘探成本低的优点,而且不需要提供电力能源,非常适合用于野外勘探,扩大了电法勘探的工作范围。但是,一般需要探测的矿脉有一部分暴露在水中,才能够获取其具体的矿脉信息,而且在一些电磁场干扰大的地方,或者是碳质页岩电场等地方,不宜采用该方法。这个方式充分利用了地质体的特性,技术体系较为复杂,是一项较为先进但不太稳定的电法勘探手段。
4.激发极化法的原理及优点
相比于其他的电法勘探手段,激发极化法有一定的局限性,因为它的基本原理水的激发极化效应,所以在勘测地周围必须有水源。该方式根据不同岩土的激发极化效应来获取地址信息,探寻金属和矿产,或者是用来解决土木工程建设和城市规划中的地质问题,可分为时间域法和频率域法两种类型,有固定点电源排列、联合剖面排列等多种电极排列方式,在实际使用过程中,勘测者常采用给地质体充电的方式来圈定矿体的延展范围,扩大勘探的深度,以获取更多的地质信息。作为一种经典的电法勘探手段,激发极化法有其独特的优势,尤其是在斑岩型矿和浸染状硫化矿的探寻中,这类矿脉的矿物质颗粒散乱分布于地质体中,无法形成低阻或电位异常现象,但是可以产生强烈的激发极化效应。
5.结语
随着社会的发展,对于地质勘探工作的技术要求也越来越高,而这正是推动地质勘测技术水平不断提高的动力[2]。电法勘测是传统电阻率法勘测的一项革新技术,利用电极和相关电测仪可自动采集数据,并传输到电脑进行数据处理,大大提升了地质勘测工作效率,能够帮助勘测人员获取更为详尽的地质信息,具有低成本、高效率的优点,近年来被广泛用于矿脉探索等领域,取得了不错的应用成果。
参考文献:
[1]钱德松.常用电法勘探的原理及优点分析[J].企业技术开发,2013,25:73-74.
[2]林建勇.电法勘探技术的特点及原理分析[J].世界有色金属,2016,11:189-190.
关键词:常用电法勘探;原理;优点
地质勘探工作应用于土木工程建设、城市规划、矿产资源开采等多个领域,其技术水平提升较快。电法勘探是其中一种应用较为广泛的物理勘探方法,其科学依据为地质结构中不同岩体的电化学特性和电磁学性质的差异性,能够根据这些岩层结构的属性判断出地质情况,是一种准确性较高的勘测方法[1]。电法勘探最初是应用在矿产资源的探索中,随着其应用领域的开拓,其应用方法也在不断增加。
1.高密度电法勘探的原理及优点
地质勘探工作大多是在野外进行,采用高密度电法勘探,可以将所有的电极放置与勘测铺面,通过成远程控制的电极转换开关和电测仪,可忽略电极距和电极排列方式的差异,短时间内实现数据的自动采集。整体上来说,高密度电法勘探的工作原理就是电阻率法,通过不同岩土的电阻率差异实现对地质结构的信息探查,且随着科学技术的发展,电阻率成像技术水平也在慢慢地提升,逐步实现了平面到三维的过渡,勘测信息的解释精度大大提升。
与传统的电阻率法相比,具有高效、自动化的优势,具体来说,体现在以下幾个方面:①一次性完成电极的现场布置工作,大大提高了勘探工作效率;②点击排列方式的多样化,能够帮助勘测工作者获取更多地电断面的地质信息,提升勘测信息的丰富度;③通过科学的电法勘探仪器,实现了数据的半自动或自动化采集,实现了地质勘测有手工操作到自动化发展的跨越。
2.瞬变电磁法的原理及优点
瞬变电磁法的基本原理是电磁感应定律,利用接地线源或者是不接地回线,不断向地下发射一次脉冲磁场的方式,地下介质接收信号将形成二次感应涡流场,反馈给接地电极或线圈,从而达到探测介质电阻率的目的。在实际应用过程中,需要在地面或者是控制设置发射线圈,通以波形电流,在线圈周围空间形成瞬变的脉冲磁场,使得地下介质产生感应电流,以此获得勘探信息。
瞬变电磁法具有施工效率高的特点,而且对于低阻体高度敏感,使得它在近几年被迅速兴起,被广泛用于煤田水文地质勘探领域。很多时候为了确保勘测信息的完整性,会在一些有争议的勘测点进行深度探测,就会选择瞬变电磁法,或者是在高阻区域寻找低阻地质体,为了保证其灵敏度,也会使用该方法。但是,这种方法有一定的局限性,比如说金属结构丰富的地层中或者是表层有大量的低阻层矿化带时,就不能采用瞬变电磁法,这也是该方法虽然高效但仍不能取代其他电法勘探手段的重要原因。
3.自然电场法的原理及优点
自然电场法应用的就是地质体在氧化还原作用、扩散作用、吸附作用等自然力的作用下而形成的自然电场。有一些岩层会因为岩石颗粒的吸附作用而形成电位异常的现象,比如说石墨化片岩和渗水带。目前自然电场法被广泛应用于硫化金属、石墨矿床等电子导电型矿体的探查中国,具有工作效率高、勘探成本低的优点,而且不需要提供电力能源,非常适合用于野外勘探,扩大了电法勘探的工作范围。但是,一般需要探测的矿脉有一部分暴露在水中,才能够获取其具体的矿脉信息,而且在一些电磁场干扰大的地方,或者是碳质页岩电场等地方,不宜采用该方法。这个方式充分利用了地质体的特性,技术体系较为复杂,是一项较为先进但不太稳定的电法勘探手段。
4.激发极化法的原理及优点
相比于其他的电法勘探手段,激发极化法有一定的局限性,因为它的基本原理水的激发极化效应,所以在勘测地周围必须有水源。该方式根据不同岩土的激发极化效应来获取地址信息,探寻金属和矿产,或者是用来解决土木工程建设和城市规划中的地质问题,可分为时间域法和频率域法两种类型,有固定点电源排列、联合剖面排列等多种电极排列方式,在实际使用过程中,勘测者常采用给地质体充电的方式来圈定矿体的延展范围,扩大勘探的深度,以获取更多的地质信息。作为一种经典的电法勘探手段,激发极化法有其独特的优势,尤其是在斑岩型矿和浸染状硫化矿的探寻中,这类矿脉的矿物质颗粒散乱分布于地质体中,无法形成低阻或电位异常现象,但是可以产生强烈的激发极化效应。
5.结语
随着社会的发展,对于地质勘探工作的技术要求也越来越高,而这正是推动地质勘测技术水平不断提高的动力[2]。电法勘测是传统电阻率法勘测的一项革新技术,利用电极和相关电测仪可自动采集数据,并传输到电脑进行数据处理,大大提升了地质勘测工作效率,能够帮助勘测人员获取更为详尽的地质信息,具有低成本、高效率的优点,近年来被广泛用于矿脉探索等领域,取得了不错的应用成果。
参考文献:
[1]钱德松.常用电法勘探的原理及优点分析[J].企业技术开发,2013,25:73-74.
[2]林建勇.电法勘探技术的特点及原理分析[J].世界有色金属,2016,11:189-190.