论文部分内容阅读
通过采用遗传算法优化网络初始权重的方法,将遗传算法(GA)和前馈误差反传播(BP)算法有机地结合,优势互补,并应用于流域面雨量预报.以广东省东北部的滨江流域为试验区域,以1995~2001年气象探空资料为基础,利用最优子集回归技术进行预报因子筛选,建立了流域面雨量预报的GA-BP神经网络模型,取得了满意的结果.试验表明:(1)6小时流域面雨量预报神经网络的优化结构是7-7-1,转移函数的组合方式为tansig-线性函数.(2)训练算法为Levenberg-Marquardt算法(LM).(3)遗传算法具有