论文部分内容阅读
随着光学遥感器分辨能力的不断提高和口径的不断增大,导致遥感器的重量越来越重,使得载体无法承受。针对此问题,提出了对薄反射镜进行主动支撑的方式,以解决口径大、重量重的问题。利用有限元分析和数学理论相结合的方法在对反射镜施加垂直镜面1g加速度(g=9.80665m/s2为重力加速度)和10℃的温升载荷情况下,对薄反射镜的位移驱动器数量及分布是否合理进行了分析计算,得出了反射镜变形最小时的各促动器的位移量,然后把位移量输入到有限元中相应的节点,计算出了校正后反射镜的面形指标能够达到光学成像要求。具体对Φ500mm、厚3mm的反射镜进行了分析,初步计算的3点和9点支撑的变形值分别为26μm和2.4μm,不能满足系统的成像要求。当运用数学方法计算支撑促动器的间距为72mm时,得出支撑点数为107个,由此再进行有限元分析,得出薄反射镜的面形值,PV值和RMS值分别为119nm和31nm,满足系统的成像要求。分析结果表明,利用数学理论与有限元仿真分析相结合的方法,在薄反射镜变形控制中是可行性的,并为主动光学实验提供了数值依据。
With the continuous improvement of the resolution capability of optical remote sensors and the ever-increasing caliber, the weight of the remote sensor is getting heavier and heavier, which makes the carrier unbearable. In response to this problem, the way to actively support the thin mirror is proposed to solve the problem of large caliber and heavy weight. Using the combination of finite element analysis and mathematical theory, the number of displacement actuators and the number of displacement mirrors of a thin mirror under the condition of a 1g vertical acceleration (g = 9.80665m / s2) and a 10 ℃ temperature rise load The distribution is reasonable analysis and calculation of the deformation of the mirror when the minimum displacement of the actuator, and then the displacement input to the corresponding node in the finite element, calculated the corrected mirror surface shape indicators can Achieve optical imaging requirements. The mirror with diameter of 500mm and thickness of 3mm is analyzed in detail. The calculated deformations of the 3 and 9 points are 26μm and 2.4μm respectively, which can not meet the imaging requirements of the system. When using the mathematical method to calculate the support actuator spacing of 72mm, the number of support points obtained was 107, and then the finite element analysis, the thin mirror surface shape value, PV and RMS values were 119nm and 31nm, to meet the imaging requirements of the system. The analysis results show that the combination of mathematical theory and finite element simulation analysis is feasible in thin mirror deformation control and provides a numerical basis for active optical experiments.