论文部分内容阅读
针对径流时间序列固有的非线性和随机性特点,本文提出了基于灰色关联分析的模糊支持向量机预报方法。该方法在传统支持向量机任意逼近的非线性映射能力上,引入模糊隶属函数来考虑气候和流域下垫面变化下径流样本对预报结果的影响。此外,预报因子选取是中长期径流预报的一大难点,考虑到相关系数法只能衡量因子间线性相关程度的不足,本文采用灰色关联分析来量化预报因子与预报对象的关联程度,并按关联度大小挑选出对径流过程影响显著的预报因子。将该方法应用于新疆车尔臣河的月径流预报中,与GRNN神经网络模型和A-FSVM模型的预报结果比