论文部分内容阅读
为实现发酵过程重要变量的预测,提出基于批次加权正则极限学习机的软测量模型。结合发酵过程中各批次变量变化轨迹与发酵初始条件密切相关的特点,采用欧式距离描述各训练批次初始条件与预测对象初始条件之间的相似度,设计了一种新的相似度量化函数求解各训练批次的惩罚权值,实现了批次加权正则极限学习机建模;另外,针对正则极限学习机中的超参数估计问题,采用贝叶斯方法对超参数进行估计,降低了计算代价且实现了参数自适应估计。将其应用于青霉素发酵过程产物质量浓度的软测量中,仿真结果表明该方法预测精度高,效果好。