论文部分内容阅读
提出了一种改进的具有初始化功能的自适应惯性权重粒子群优化(PSO)算法.该算法首先引入自适应惯性权重策略均衡全局和局部搜索能力,并针对运行过程中出现停滞现象的粒子群,围绕其加权重心位置重新初始化,引导粒子突破了局部极值的限制,提高了算法的收敛速度.最后,将此算法、PSO算法及惯性权重线性递减的PSO(LDW-PSO)算法进行了比较.实验结果表明,该算法不仅有效地增强了粒子突破局部极值的能力,而且算法的收敛速度和稳定性也有了一定的提高.