论文部分内容阅读
在运用神经网络进行模拟电路故障诊断的过程中,代表着故障特征的网络输入至关重要,由于小波变换的时频局部化和多尺度分析等特性,将两者结合起来,通过小波变换对模拟电路的输出响应进行故障特征提取,同时解决PSPICE与MATLAB之间的数据通信问题,提出将蒙特卡罗分析产生的所有训练样本经过处理后输入到一个神经网络进行训练的方法,从而避免了训练多个神经网络。利用神经网络对各种故障模式进行分类,实现模拟电路的故障诊断,并进一步与传统的BP网络故障诊断法进行比较。仿真结果表明,该方法可以实现故障检测及定位,诊断的