论文部分内容阅读
传统聚类算法无法有效地处理现实世界中存在许多高维空间数据。为此,提出一种基于超图模式的高维空间数据聚类算法HGHD,通过数据集中的数据及其间关系建立超图模型,并应用超图划分进行聚类,从而把一个求解高维空间数据聚类问题转换为一个超图分割寻优问题。该方法采用自底向上的分层思想,相对于传统方法最大的优势是不需要降维,直接用超图模式描述原始数据之间的关系,能产生高质量的聚类结果。