论文部分内容阅读
综合运用模糊数学和神经网络知识构建了一个模糊神经网络模型,用以预测电站燃煤锅炉的结渣特性.通过引入反映煤灰特性的4个常用指标以及反映锅炉运行情况的两个指标,使所建模型综合考虑了煤灰特性和锅炉运行因素对结渣的影响.以实际电厂燃煤锅炉为样本,基于改进的BP(back-propagation)算法对网络模型进行了训练.为验证模型的准确性,对7台电站燃煤锅炉的结渣特性进行预测,并将该模型与只考虑煤灰特性指标的常规BP网络模型进行比较.验证结果表明,模糊神经网络模型的预测结果与实际相符,效果优于常规BP网络模型.