论文部分内容阅读
目标的运动轨迹是跟踪和识别目标行为的重要特征之一,在视觉跟踪等领域得到了广泛的应用.然而,由于轨迹数据具有高维和非线性等特点,因而直接建模目标的运动轨迹比较困难.为此,引入一种称为自编码(au-toencoder)的双向深层神经网络,并结合粒子滤波提出一种轨迹跟踪识别算法.首先,自编码网络按照一定的学习规则将高维轨迹嵌入到二维平面上,通过该网络的逆向映射得到轨迹的生成模型,由轨迹生成模型可得到一系列可行性轨迹.跟踪过程中,每时刻粒子滤波器的粒子便从这些可行性轨迹中进行抽样,并利用颜色似然函数对抽取的