论文部分内容阅读
为了降低湍流模型湍流参数不确定性给工程湍流问题求解带来数值误差,以后台阶流动为例研究了适用范围很广的k-ε湍流模型的参数识别问题。针对模型和实验数据的不确定性而采用了贝叶斯概率反演方法,该方法集成了有限单元法的正向计算和Metropolis-Hastings抽样算法的反向计算,从而给出在流速测量值已知的条件下标准k-ε湍流模型参数的后验概率分布。算例计算表明,采用参数识别后的参数值进行计算比传统推荐值有效地降低了数值误差。