融合U-Net及MobileNet-V2的快速语义分割网络

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:lzj60
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统U-Net网络模型大,处理图片速度慢,难以适应工业生产中实时的需求。针对该问题,设计并实现了一个轻量级全卷积语义分割网络LU-Net。LU-Net网络以U-Net框架为主体,结合MobileNet-V2的思想,利用深度可分离卷积参数少、计算量小的特点轻量化网络模型。网络综合利用bottleneck模块与普通卷积的优点,并高效利用了高层特征,在保持精度的同时,大幅缩短了分割所需时间。经公开数据集DRIVE及自制凹陷字符数据集上实验的验证,相较于原U-Net网络模型,提出的LU-Net模型参数量缩小
其他文献
针对飞机部件周期控制律电加热防除冰的应用,提出基于机器学习以预测电加热防除冰表面温度的变化趋势。依靠大型结冰风洞及其电加热防除冰控制系统完成防除冰试验,获得有效的试验数据,以通、断电周期为分割单元,将试验数据划分成验证集和训练集。根据电热防除冰过程的换热情况,构建样本的特征参数,利用机器学习的有监督学习方式,选择KNN近邻回归算法和局部线性加权回归算法预测温度变化率,再转换为温度,得到的温度变化与测量数据的线性相关性达到80%以上的高相似度结果,表明使用机器学习可快速预测电热防除冰部件的表面温度变化趋势,
摘 要:以自由曲面工艺品逆向设计为例,介绍了基于Geomagic Wrap实现点云数据处理、逆向建模的过程。结果表明,对于复杂自由曲面类零件,通过分割特征、构造有序的栅格、重构曲面片的逆向建模方法,有利于提高曲面的光顺度与精度。  关键词:自由曲面;Geomagic Wrap;逆向设计;精度  0 引言  逆向工程(Reverse Engineering,RE)是再生产设计的产物,是通过测量手段