论文部分内容阅读
提出一种基于模糊识别的神经网络分类器。首先对训练样本XK进行模糊聚类,求其从属于各类别ωi的隶属变Uwi(Xk)。然后利用这些训练样本和所求得的从属于各类别的隶属度,通过神经网络的学习拟合出各模式类的隶属函数,进而构造出神经网络分类器。这种方法将模糊理论与神经网络分布式联想存储的优点相结合,使无监督分类器成了有监督分类器。