论文部分内容阅读
基于1987年、1992年、1997年、2002年、2007年、2012年分布在香格里拉市的34个高山松固定样地数据,以及Landsat时间序列数据集,利用谷歌地球引擎和Python,通过3种滤波算法对时间序列数据进行重构,应用随机森林算法对森林地上生物量进行估测,根据模型评价指标对重构前后时间序列数据的估测效果进行分析。结果表明:采用3种不同滤波方法重构的时间序列数据训练的非参数模型,其拟合精度和预测精度均高于滤波前时间序列的预测精度,整体均方根误差和相对均方根误差指标均优于滤波前数据,其中ARM