论文部分内容阅读
RGB-D图像显著性检测是指在传统的2D图像中附加深度信息从而提取显著对象,但是现有的显著性检测模型,大多数只关注显著物体本身,却忽略了背景信息。因此,提出了一个新颖的显著性检测模型,将深度信息同时考虑到背景和前景中提取出显著区域。首先,通过图像边界信息的背景测量机制来去除前景噪声并从边界超像素中选择背景种子,从而计算出基于背景的显著图;其次,将输入的图像构造成图,并将深度信息引入到图形结构中,利用颜色、深度、位置等线索获取前景种子,从而计算出基于前景的显著图;最后,将背景图和前景图融合获得初始显著