论文部分内容阅读
文本分类是垃圾短信过滤的核心技术,为了在文本分类时实现特征提取,就需要在不影响分类准确性的前提下,减少原始空间的维数。文档频率、信息增益、互信息、统计、期望交义熵法、文本证据权和主成分分析是目前采用的主要的特征降维方法,通过实验数据对六种方法的性能做比较分析后发现,对于垃圾短信过滤系统而言,信息增益是最优的特征选择方法。