一类不可微二次规划逆问题

来源 :计算数学 | 被引量 : 0次 | 上传用户:f_mei520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文求解了一类二次规划的逆问题,具体为目标函数是矩阵谱范数与向量无穷范数之和的最小化问题.首先将该问题转化为目标函数可分离变量的凸优化问题,提出用G-ADMM法求解.并结合奇异值阈值算法,Moreau-Yosida正则化算法,matlab优化工具箱的quadprog函数来精确求解相应的子问题.而对于其中一个子问题的精确求解过程中发现其仍是目标函数可分离变量的凸优化问题,由于其变量都是矩阵,所以采用适合多个矩阵变量的交替方向法求解,通过引入新的变量,使其每个子问题的解都具有显示表达式.最后给出采用的G-ADMM法求解本文问题的数值实验.数据表明,本文所采用的方法能够高效快速地解决该二次规划逆问题.
其他文献
4月29日,随着长征五号B运载火箭将中国空间站天和核心舱顺利送入太空,中国空间站正式拉开建造大幕.rn按照空间站建造任务规划,今明两年我国将接续实施11次飞行任务,包括3次空
期刊
本文基于分段二次多项式方程,构造了一种积极集策略的光滑化max函数.通过给出与光滑化max函数相关的分量函数指标集的直接计算方法,将分段二次多项式方程转化为一般二次多项
本文研究一类来源于分数阶特征值问题的Toeplitz线性代数方程组的求解.构造Strang循环矩阵作为预处理矩阵来求解该Toeplitz线性代数方程组,分析了预处理后系数矩阵的特征值性
本文讨论了简化摩擦接触问题的一类对称弱超内罚间断Galerkin方法.首先,在能量范数意义下得到最优先验误差估计.进一步,我们推导了一类残量型后验误差估计子,并证明了它的可