论文部分内容阅读
对一种非线性时变系统提出了基于神经网络的自适应逆控制方案。该方案中用两个动态神经网络分别作为模型辨识器和自适应逆控制器,详细推导了在线训练自适应逆控制器的BPTM(backpropagationthroughmodel)和RTRL(realtimerecursivelearning)算法。根据大幅面喷墨打印机的结构特点,建立了打印头车架系统的时变非线性动力学模型作为仿真对象,在Matlab/Simulink平台下进行了算法仿真验证。结果表明了该方案收敛快,能有效控制该时变非线性对象。