论文部分内容阅读
PM2.5和PM10(记为PM2.5/10)对空气质量和人类健康有着严重威胁,日益引起国内外的关注,并成为大气污染控制工程中最重要的部分。基于陕西省咸阳市两寺渡监测站的污染物(PM2.5、PM10、NO2、NO、NOx、CO)和相关气象参数的监测数据,建立起基于非线性有源自回归神经网络的预测模型,并分别针对不同预测时间段确定最优网络结构,从而实现了对未来6小时、12小时以及24小时PM2.5/10浓度的有效预测。实验结果表明:(1)NARX神经网络模型可对未来24小时内的PM2.5/10污染物浓度进行较为