论文部分内容阅读
【摘 要】《高等代数》是数学系的重要基础课。本文针对《高等代数》这门课的习题处理给出了自己的一点看法。
【关键词】高等代数 习题处理
【中图分类号】G642 【文献标识码】A 【文章编号】1006-9682(2011)07-0015-01
高等代数是大学数学专业的一门重要基础课程,其特点是抽象严谨,解题方法灵活多变。因此,同学普遍感到难学。有些同学反应尽管在课堂上对教学内容已经很清楚,但是到做时仍不知如何下手。
为帮助学生更好的消化课堂内容,加深对基本概念、基本理论的理解,提高解题的技巧和能力,老师还需要上习题课。习题有助于更好地把握教学内容中的概念、方法和技巧,所以应该处理好习题课。习题课的作用:有助于正确理解基本概念和教材所涉及的内容;有助于训练学生的解题技巧,培养解题能力。那么,该如何上好习题课呢?我认为应注意以下几点:
首先,分析常见的错误。主要是将学生常见的错误指出来并加以分析。例如:在多项式的这一章中,很多同学在利用艾森斯坦判别法时出现的常见错误是将它作为必要条件,认为不满足艾森斯坦判别条件的整系数多项式就是可约的。针对这种情况,老师应举例说明艾森斯坦判别法只是整系数多项式不可约的充分条件,并非必要条件,不满足判别条件的整系数多项可能是可约的,也可能是不可约的。
其次,解题的方法和技巧。有一些习题初看好像有些难度,但是只要仔细进行分析,结合所学内容就可以得出不同的解题方法。例如:教材[1]的习题中有如下一道题:设V是n维欧氏空间,α≠0是V中的一个固定向量,证明:V1={x|(x,α)=0,x∈V}是V的子空间;V1的维数等于n-1。分析:问题(1)的证明一般情况下就用子空间的定义证明即可,即对数乘和加法运算封闭。但是问题(2)初看觉得不知如何下手,但是我们在所学内容的基础上进行分析就可以得出此题不同的解法。
证法1:为证明结论,首先证明V1是L(α)(表示由向量α生成的子空间)的正交补。事实上,由书上的结论可知:
L(α)⊥={x∈V|(x,β)=0, β∈L(α)}
而容易证明:
{x∈V|(x,β)=0, β∈L(α)}=V1。
从而L(α)⊥=V1。所以,V=V1+L(α)=V1○+L(α)。因此,由直和的判定定理可知:
n=dimV=dimV1+dimL(α)=dimV1+1。
这表明dimV1=n-1。
证法2:由书上结论可知任意欧氏空间必存在标准正交基,故不妨设α1,…αn为V的标准正交基。设α=k1α1+…+knαn,其中k1,…,kn∈R,则对 β=x1α1+…+xnαn∈V1,其中x1,…,xn∈R,由α1,…,αn为V的标准正交基可知(α,β)=x1k1+…+xnkn=0。因此,线性方程组x1k1+…+xnkn=0的解就是V1中的向量在α1,…,αn下的坐标向量,其解空间的维数就是V1的维数。因为α≠0,故(k1,…,kn)≠0,从而x1k1+…+xnkn=0的解空间的维数为n-1,即dimV1=n-1。
证法3:考虑实数集R按数的加法和数乘在实数域R上构成的的线性空间,定义映射σ∶V→R为σ(x)=(x,α), x∈V,则易验证σ是线性映射,σ的核空间就是V1={x|σ(x)=(x,α)=0,x∈V},σ的像空间为R。由线性映射的维数公式有:σ的核空间的维数+σ的像空间的维数=dimV=n,而σ像空间的维数=dimR=1,故σ的核空间的维数=dimV1=n-1,故结论成立。
以上利用不同的方法给出了一道习题的证明,并且所用到的知识都是高等代数中一些重要的结论。通过不同的方法解题可以让学生了解到一道数学题的证明不止一种方法,只要在做题的过程中联系所学的内容,可以得到许多不同的方法,这也将有助于加深对已学内容的理解。
高等代数这门课是比较难的基础课,如何让学生更好的掌握所学内容是所有老师一直在思考的问题。本文,只从习题处理对高等代数的教学进行了分析。我认为学数学一定要多做题,在做题过程中学生可以更好地掌握所学的抽象概念,由此对所学内容加深理解。在教学实践中,可以发现老师可以通过习题课加深学生对这门课的内容,可以培养学生自觉地上下联系、经常总结,从而对这门课感兴趣,愿意去学习并能学好它。
参考文献
1 北京大学数学系几何与代数教研室代数小组.高等代数(3版)[M].北京:高等教育出版社,2003
2 王萼芳、石生明等.高等代数辅导与习题解答[M].北京:高等教育出版社,2007
【关键词】高等代数 习题处理
【中图分类号】G642 【文献标识码】A 【文章编号】1006-9682(2011)07-0015-01
高等代数是大学数学专业的一门重要基础课程,其特点是抽象严谨,解题方法灵活多变。因此,同学普遍感到难学。有些同学反应尽管在课堂上对教学内容已经很清楚,但是到做时仍不知如何下手。
为帮助学生更好的消化课堂内容,加深对基本概念、基本理论的理解,提高解题的技巧和能力,老师还需要上习题课。习题有助于更好地把握教学内容中的概念、方法和技巧,所以应该处理好习题课。习题课的作用:有助于正确理解基本概念和教材所涉及的内容;有助于训练学生的解题技巧,培养解题能力。那么,该如何上好习题课呢?我认为应注意以下几点:
首先,分析常见的错误。主要是将学生常见的错误指出来并加以分析。例如:在多项式的这一章中,很多同学在利用艾森斯坦判别法时出现的常见错误是将它作为必要条件,认为不满足艾森斯坦判别条件的整系数多项式就是可约的。针对这种情况,老师应举例说明艾森斯坦判别法只是整系数多项式不可约的充分条件,并非必要条件,不满足判别条件的整系数多项可能是可约的,也可能是不可约的。
其次,解题的方法和技巧。有一些习题初看好像有些难度,但是只要仔细进行分析,结合所学内容就可以得出不同的解题方法。例如:教材[1]的习题中有如下一道题:设V是n维欧氏空间,α≠0是V中的一个固定向量,证明:V1={x|(x,α)=0,x∈V}是V的子空间;V1的维数等于n-1。分析:问题(1)的证明一般情况下就用子空间的定义证明即可,即对数乘和加法运算封闭。但是问题(2)初看觉得不知如何下手,但是我们在所学内容的基础上进行分析就可以得出此题不同的解法。
证法1:为证明结论,首先证明V1是L(α)(表示由向量α生成的子空间)的正交补。事实上,由书上的结论可知:
L(α)⊥={x∈V|(x,β)=0, β∈L(α)}
而容易证明:
{x∈V|(x,β)=0, β∈L(α)}=V1。
从而L(α)⊥=V1。所以,V=V1+L(α)=V1○+L(α)。因此,由直和的判定定理可知:
n=dimV=dimV1+dimL(α)=dimV1+1。
这表明dimV1=n-1。
证法2:由书上结论可知任意欧氏空间必存在标准正交基,故不妨设α1,…αn为V的标准正交基。设α=k1α1+…+knαn,其中k1,…,kn∈R,则对 β=x1α1+…+xnαn∈V1,其中x1,…,xn∈R,由α1,…,αn为V的标准正交基可知(α,β)=x1k1+…+xnkn=0。因此,线性方程组x1k1+…+xnkn=0的解就是V1中的向量在α1,…,αn下的坐标向量,其解空间的维数就是V1的维数。因为α≠0,故(k1,…,kn)≠0,从而x1k1+…+xnkn=0的解空间的维数为n-1,即dimV1=n-1。
证法3:考虑实数集R按数的加法和数乘在实数域R上构成的的线性空间,定义映射σ∶V→R为σ(x)=(x,α), x∈V,则易验证σ是线性映射,σ的核空间就是V1={x|σ(x)=(x,α)=0,x∈V},σ的像空间为R。由线性映射的维数公式有:σ的核空间的维数+σ的像空间的维数=dimV=n,而σ像空间的维数=dimR=1,故σ的核空间的维数=dimV1=n-1,故结论成立。
以上利用不同的方法给出了一道习题的证明,并且所用到的知识都是高等代数中一些重要的结论。通过不同的方法解题可以让学生了解到一道数学题的证明不止一种方法,只要在做题的过程中联系所学的内容,可以得到许多不同的方法,这也将有助于加深对已学内容的理解。
高等代数这门课是比较难的基础课,如何让学生更好的掌握所学内容是所有老师一直在思考的问题。本文,只从习题处理对高等代数的教学进行了分析。我认为学数学一定要多做题,在做题过程中学生可以更好地掌握所学的抽象概念,由此对所学内容加深理解。在教学实践中,可以发现老师可以通过习题课加深学生对这门课的内容,可以培养学生自觉地上下联系、经常总结,从而对这门课感兴趣,愿意去学习并能学好它。
参考文献
1 北京大学数学系几何与代数教研室代数小组.高等代数(3版)[M].北京:高等教育出版社,2003
2 王萼芳、石生明等.高等代数辅导与习题解答[M].北京:高等教育出版社,2007