论文部分内容阅读
使用原始SEGNET模型对图像进行语义分割时,未对图像中相邻像素点间的关系进行考虑,导致同一目标中像素点类别预测结果不一致。通过在SEGNET结构中加入一条自上而下的通道,使得SEGNET包含的多尺度语义信息更加丰富,从而提升对每个像素点的类别预测精度,在模型中加入生成对抗网络以充分考虑空间中相邻像素点间关系。实验结果表明,该模型的语义分割效果相比原始SEGNET模型显著提升,且可有效解决SEGNET测试中出现的分类错误问题。