论文部分内容阅读
应用径向基函数网络(RBFNN)和正交最小二乘算法(OLS),提出了一套针对柴油机低温起动的传感器在线故障诊断策略。以传感器采样值作为RBFNN的输入,传感器故障作为输出,进行了柴油机低温起动的传感器在线故障诊断训练与学习。利用RBFNN诊断策略,进行了柴油机低温起动的电流传感器、电压传感器和转速传感器的硬故障(短路、断路、值不变)和软故障(线性度、灵敏度、重复性等误差)的在线诊断试验。结果表明:传感器硬故障的诊断率达到95.6%;最大线性度误差为0.5%,最大灵敏度误差为0.8%,最大重复性误差为0.1