论文部分内容阅读
Emergy analysis is effective for analyzing ecological economic systems. However, the accuracy of the approach is affected by the diversity of economic level, meteorological and hydrological parameters in different regions. The present study evaluated the economic benefits, environmental impact, and sustainability of indoor, semi-intensive and extensive farming systems of sea cucumber(Apostichopus japonicus) in the same region. The results showed that A. japonicus indoor farming system was high in input and output(yield) whereas pond extensive farming system was low in input and output. The output/input ratio of indoor farming system was lower than that of pond extensive farming system, and the output/input ratio of semi-intensive farming system fell in between them. The environmental loading ratio of A. japonicus extensive farming system was lower than that of indoor farming system. In addition, the emergy yield and emergy exchange ratios, and emergy sustainability and emergy indexes for sustainable development were higher in extensive farming system than those in indoor farming system. These results indicated that the current extensive farming system exerted fewer negative influences on the environment, made more efficient use of available resources, and met more sustainable development requirements than the indoor farming system. A. japonicus farming systems showed more emergy benefits than fish farming systems. The pond farming systems of A. japonicus exploited more free local environmental resources for production, caused less potential pressure on the local environment, and achieved higher sustainability than indoor farming system.
However, the accuracy of the approach is affected by the diversity of economic levels, meteorological and hydrological parameters in different regions. The present study evaluating the economic benefits, environmental impact, and sustainability of indoor, semi-intensive and extensive farming systems of sea cucumber (Apostichopus japonicus) in the same region. The results showed that A. japonicus indoor farming system was high in input and output (yield) illustrative pond extensive farming system was low in input and output. The output / input ratio of indoor farming system was lower than that of pond extensive farming system, and the output / input ratio of semi-intensive farming system fell in between. The environmental loading ratio of A. japonicus extensive farming system was lower than that of indoor farming system. In addition, the emergy yield and emergy exchange ratios, and emergy sustainability and emergy indexes f or sustainable development were higher in extensive farming system than those in indoor farming system. These results indicated that the current extensive farming system exerted fewer negative influences on the environment, made more efficient use of available resources, and met more sustainable development requirements than the indoor farming system. A. japonicus farming systems showed more emergy benefits than fish farming systems. The pond farming systems of A. japonicus exploited more free local environmental resources for production, caused less potential pressure on the local environment, and achieved higher sustainability than indoor farming system.