论文部分内容阅读
针对推荐系统中普遍存在的数据稀疏和冷启动等问题,提出一种综合评分和信任关系的社会化推荐算法。首先对网络中新用户的初始信任值进行合理赋值,有效地解决了新用户的信任冷启动问题。鉴于用户的喜好会受其朋友的影响,推荐模型又利用朋友之间的信任矩阵对用户自身的特征向量进行修正,解决了用户特征向量的精准构建及信任传递问题。实验结果表明,所提算法较传统的社会网络推荐算法在性能上有显著提高。